Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.489
Filtrar
1.
Front Immunol ; 15: 1327405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601153

RESUMO

Introduction: Acute myeloid leukemia (AML) is the most common acute leukemia in adults with an overall poor prognosis and high relapse rate. Multiple factors including genetic abnormalities, differentiation defects and altered cellular metabolism contribute to AML development and progression. Though the roles of oxidative phosphorylation and glycolysis are defined in AML, the role of the hexosamine biosynthetic pathway (HBP), which regulates the O-GlcNAcylation of cytoplasmic and nuclear proteins, remains poorly defined. Methods: We studied the expression of the key enzymes involved in the HBP in AML blasts and stem cells by RNA sequencing at the single-cell and bulk level. We performed flow cytometry to study OGT protein expression and global O-GlcNAcylation. We studied the functional effects of inhibiting O-GlcNAcylation on transcriptional activation in AML cells by Western blotting and real time PCR and on cell cycle by flow cytometry. Results: We found higher expression levels of the key enzymes in the HBP in AML as compared to healthy donors in whole blood. We observed elevated O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) expression in AML stem and bulk cells as compared to normal hematopoietic stem and progenitor cells (HSPCs). We also found that both AML bulk cells and stem cells show significantly enhanced OGT protein expression and global O-GlcNAcylation as compared to normal HSPCs, validating our in silico findings. Gene set analysis showed substantial enrichment of the NF-κB pathway in AML cells expressing high OGT levels. Inhibition of O-GlcNAcylation decreased NF-κB nuclear translocation and the expression of selected NF-κB-dependent genes controlling cell cycle. It also blocked cell cycle progression suggesting a link between enhanced O-GlcNAcylation and NF-κB activation in AML cell survival and proliferation. Discussion: Our study suggests the HBP may prove a potential target, alone or in combination with other therapeutic approaches, to impact both AML blasts and stem cells. Moreover, as insufficient targeting of AML stem cells by traditional chemotherapy is thought to lead to relapse, blocking HBP and O-GlcNAcylation in AML stem cells may represent a novel promising target to control relapse.


Assuntos
Leucemia Mieloide Aguda , NF-kappa B , Humanos , NF-kappa B/metabolismo , Vias Biossintéticas , Hexosaminas , Leucemia Mieloide Aguda/genética , Células-Tronco/metabolismo , Recidiva , RNA/metabolismo
2.
Reprod Biol Endocrinol ; 22(1): 41, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605340

RESUMO

BACKGROUND: Premature ovarian failure (POF) caused by cisplatin is a severe and intractable sequela for young women with cancer who received chemotherapy. Cisplatin causes the dysfunction of granulosa cells and mainly leads to but is not limited to its apoptosis and autophagy. Ferroptosis has been also reported to participate, while little is known about it. Our previous experiment has demonstrated that endometrial stem cells (EnSCs) can repair cisplatin-injured granulosa cells. However, it is still unclear whether EnSCs can play a repair role by acting on ferroptosis. METHODS: Western blotting and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were applied to detect the expression levels of ferroptosis-related genes. CCK-8 and 5-Ethynyl-2'-deoxyuridine (EdU) assays were used to evaluate cell viability. Transmission electron microscopy (TEM) was performed to detect ferroptosis in morphology. And the extent of ferroptosis was assessed by ROS, GPx, GSSG and MDA indicators. In vivo, ovarian morphology was presented by HE staining and the protein expression in ovarian tissue was detected by immunohistochemistry. RESULTS: Our results showed that ferroptosis could occur in cisplatin-injured granulosa cells. Ferroptosis inhibitor ferrostatin-1 (Fer-1) and EnSCs partly restored cell viability and mitigated the damage of cisplatin to granulosa cells by inhibiting ferroptosis. Moreover, the repair potential of EnSCs can be markedly blocked by ML385. CONCLUSION: Our study demonstrated that cisplatin could induce ferroptosis in granulosa cells, while EnSCs could inhibit ferroptosis and thus exert repair effects on the cisplatin-induced injury model both in vivo and in vitro. Meanwhile, Nrf2 was validated to participate in this regulatory process and played an essential role.


Assuntos
Cisplatino , Ferroptose , Feminino , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Células da Granulosa/metabolismo , Células-Tronco/metabolismo
3.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579685

RESUMO

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proliferação de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/agonistas , Proteínas de Sinalização YAP/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
4.
BMC Oral Health ; 24(1): 407, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556862

RESUMO

BACKGROUND: Dental pulp stem cells (DPSCs) are a kind of undifferentiated dental mesenchymal stem cells with strong self-renewal ability and multi-differentiation potential. This study aimed to investigate the regulatory functions of succinylation modification in DPSCs. METHODS: DPSCs were isolated from the dental pulp collected from healthy subjects, and then stem cell surface markers were identified using flow cytometry. The osteogenic differentiation ability of DPSCs was verified by alkaline phosphatase (ALP) and alizarin red staining methods, while adipogenic differentiation was detected by oil red O staining. Meanwhile, the mRNA of two desuccinylases (SIRT5 and SIRT7) and three succinylases (KAT2A, KAT3B, and CPT1A) in DPSCs before and after mineralization induction were detected using quantitative real-time PCR. The cell cycle was measured by flow cytometry, and the expression of bone-specific genes, including COL1a1 and Runx2 were evaluated by western blotting and were combined for the proliferation and differentiation of DPSCs. Co-immunoprecipitation (co-IP) and immunofluorescence were combined to verify the binding relationship between proteins. RESULTS: The specific markers of mesenchymal stem cells were highly expressed in DPSCs, while the osteogenic differentiation ability of isolated DPSCs was confirmed via ALP and alizarin red staining. Similarly, the oil red O staining also verified the adipogenic differentiation ability of DPSCs. The levels of KAT2A were found to be significantly upregulated in mineralization induction, which significantly decreased the ratio of G0/G1 phase and increased S phase cells; converse results regarding cell cycle distribution were obtained when KAT2A was inhibited. Moreover, overexpression of KAT2A promoted the differentiation of DPSCs, while its inhibition exerted the opposite effect. The elevated KAT2A was found to activate the Notch1 signaling pathway, which succinylated Notch1 at the K2177 site to increase their corresponding protein levels in DPSCs. The co-IP results showed that KAT2A and Notch1 were endogenously bound to each other, while inhibition of Notch1 reversed the effects of KAT2A overexpression on the DPSCs proliferation and differentiation. CONCLUSION: KAT2A interacted directly with Notch1, succinylating the Notch1 at the K2177 site to increase their corresponding protein levels in DPSCs. Similarly, KAT2A-mediated succinylation modification of Notch1 promotes the DPSCs proliferation and differentiation, suggesting that targeting KAT2A and Notch1 may contribute to tooth regeneration.


Assuntos
Antraquinonas , Compostos Azo , Osteogênese , Células-Tronco , Humanos , Osteogênese/fisiologia , Células-Tronco/metabolismo , Polpa Dentária , Proliferação de Células , Diferenciação Celular , Células Cultivadas , Histona Acetiltransferases/metabolismo
5.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561223

RESUMO

Glomerular filtration relies on the type IV collagen (ColIV) network of the glomerular basement membrane, namely, in the triple helical molecules containing the α3, α4, and α5 chains of ColIV. Loss of function mutations in the genes encoding these chains (Col4a3, Col4a4, and Col4a5) is associated with the loss of renal function observed in Alport syndrome (AS). Precise understanding of the cellular basis for the patho-mechanism remains unknown and a specific therapy for this disease does not currently exist. Here, we generated a novel allele for the conditional deletion of Col4a3 in different glomerular cell types in mice. We found that podocytes specifically generate α3 chains in the developing glomerular basement membrane, and that its absence is sufficient to impair glomerular filtration as seen in AS. Next, we show that horizontal gene transfer, enhanced by TGFß1 and using allogenic bone marrow-derived mesenchymal stem cells and induced pluripotent stem cells, rescues Col4a3 expression and revive kidney function in Col4a3-deficient AS mice. Our proof-of-concept study supports that horizontal gene transfer such as cell fusion enables cell-based therapy in Alport syndrome.


Assuntos
Nefrite Hereditária , Podócitos , Camundongos , Animais , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Podócitos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Membrana Basal Glomerular/metabolismo , Células-Tronco/metabolismo
6.
Mol Med ; 30(1): 46, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584262

RESUMO

Effective therapeutic targets and early diagnosis are major challenges in the treatment of gastrointestinal tract (GIT) cancers. SALL4 is a well-known transcription factor that is involved in organogenesis during embryonic development. Previous studies have revealed that SALL4 regulates cell proliferation, survival, and migration and maintains stem cell function in mature cells. Additionally, SALL4 overexpression is associated with tumorigenesis. Despite its characterization as a biomarker in various cancers, the role of SALL4 in GIT cancers and the underlying mechanisms are unclear. We describe the functions of SALL4 in GIT cancers and discuss its upstream/downstream genes and pathways associated with each cancer. We also consider the possibility of targeting these genes or pathways as potential therapeutic options for GIT cancers.


Assuntos
Neoplasias Gastrointestinais , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Gastrointestinais/genética , Células-Tronco/metabolismo , Desenvolvimento Embrionário , Linhagem Celular Tumoral
7.
Nat Commun ; 15(1): 3080, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594251

RESUMO

Epithelial barrier dysfunction and crypt destruction are hallmarks of inflammatory bowel disease (IBD). Intestinal stem cells (ISCs) residing in the crypts play a crucial role in the continuous self-renewal and rapid recovery of intestinal epithelial cells (IECs). However, how ISCs are dysregulated in IBD remains poorly understood. Here, we observe reduced DHX9 protein levels in IBD patients, and mice with conditional DHX9 depletion in the intestinal epithelium (Dhx9ΔIEC) exhibit an increased susceptibility to experimental colitis. Notably, Dhx9ΔIEC mice display a significant reduction in the numbers of ISCs and Paneth cells. Further investigation using ISC-specific or Paneth cell-specific Dhx9-deficient mice demonstrates the involvement of ISC-expressed DHX9 in maintaining epithelial homeostasis. Mechanistically, DHX9 deficiency leads to abnormal R-loop accumulation, resulting in genomic instability and the cGAS-STING-mediated inflammatory response, which together impair ISC function and contribute to the pathogenesis of IBD. Collectively, our findings highlight R-loop-mediated genomic instability in ISCs as a risk factor in IBD.


Assuntos
Doenças Inflamatórias Intestinais , Estruturas R-Loop , Humanos , Animais , Camundongos , Mucosa Intestinal/metabolismo , Doenças Inflamatórias Intestinais/patologia , Celulas de Paneth/metabolismo , Células-Tronco/metabolismo , Células Epiteliais/metabolismo , Homeostase , Proteínas de Neoplasias/metabolismo , RNA Helicases DEAD-box/metabolismo
8.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563568

RESUMO

In multicellular organisms, specialized tissues are generated by specific populations of stem cells through cycles of asymmetric cell divisions, where one daughter undergoes differentiation and the other maintains proliferative properties. In Arabidopsis thaliana roots, the columella - a gravity-sensing tissue that protects and defines the position of the stem cell niche - represents a typical example of a tissue whose organization is exclusively determined by the balance between proliferation and differentiation. The columella derives from a single layer of stem cells through a binary cell fate switch that is precisely controlled by multiple, independent regulatory inputs. Here, we show that the HD-Zip II transcription factors (TFs) HAT3, ATHB4 and AHTB2 redundantly regulate columella stem cell fate and patterning in the Arabidopsis root. The HD-Zip II TFs promote columella stem cell proliferation by acting as effectors of the FEZ/SMB circuit and, at the same time, by interfering with auxin signaling to counteract hormone-induced differentiation. Overall, our work shows that HD-Zip II TFs connect two opposing parallel inputs to fine-tune the balance between proliferation and differentiation in columella stem cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Células-Tronco/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Meristema/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
9.
Cell Rep Med ; 5(4): 101485, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38582086

RESUMO

Despite most acute myeloid leukemia (AML) patients entering remission following chemotherapy, outcomes remain poor due to surviving leukemic cells that contribute to relapse. The nature of these enduring cells is poorly understood. Here, through temporal single-cell transcriptomic characterization of AML hierarchical regeneration in response to chemotherapy, we reveal a cell population: AML regeneration enriched cells (RECs). RECs are defined by CD74/CD68 expression, and although derived from leukemic stem cells (LSCs), are devoid of stem/progenitor capacity. Based on REC in situ proximity to CD34-expressing cells identified using spatial transcriptomics on AML patient bone marrow samples, RECs demonstrate the ability to augment or reduce leukemic regeneration in vivo based on transfusion or depletion, respectively. Furthermore, RECs are prognostic for patient survival as well as predictive of treatment failure in AML cohorts. Our study reveals RECs as a previously unknown functional catalyst of LSC-driven regeneration contributing to the non-canonical framework of AML regeneration.


Assuntos
Perfilação da Expressão Gênica , Leucemia Mieloide Aguda , Humanos , Prognóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco/metabolismo
10.
Nat Commun ; 15(1): 3018, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589357

RESUMO

Ionizing radiation induces cell death in the gastrointestinal (GI) epithelium by activating p53. However, p53 also prevents animal lethality caused by radiation-induced acute GI syndrome. Through single-cell RNA-sequencing of the irradiated mouse small intestine, we find that p53 target genes are specifically enriched in regenerating epithelial cells that undergo fetal-like reversion, including revival stem cells (revSCs) that promote animal survival after severe damage of the GI tract. Accordingly, in mice with p53 deleted specifically in the GI epithelium, ionizing radiation fails to induce fetal-like revSCs. Using intestinal organoids, we show that transient p53 expression is required for the induction of revival stem cells and is controlled by an Mdm2-mediated negative feedback loop. Together, our findings reveal that p53 suppresses severe radiation-induced GI injury by promoting fetal-like reprogramming of irradiated intestinal epithelial cells.


Assuntos
Lesões por Radiação , Proteína Supressora de Tumor p53 , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Intestinos , Trato Gastrointestinal/metabolismo , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Células-Tronco/metabolismo , Apoptose/genética
12.
Cell Death Dis ; 15(4): 268, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627382

RESUMO

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) represents the initial tumor suppressor gene identified to possess phosphatase activity, governing various cellular processes including cell cycle regulation, migration, metabolic pathways, autophagy, oxidative stress response, and cellular senescence. Current evidence suggests that PTEN is critical for stem cell maintenance, self-renewal, migration, lineage commitment, and differentiation. Based on the latest available evidence, we provide a comprehensive overview of the mechanisms by which PTEN regulates activities of different stem cell populations and influences neurological disorders, encompassing autism, stroke, spinal cord injury, traumatic brain injury, Alzheimer's disease and Parkinson's disease. This review aims to elucidate the therapeutic impacts and mechanisms of PTEN in relation to neurogenesis or the stem cell niche across a range of neurological disorders, offering a foundation for innovative therapeutic approaches aimed at tissue repair and regeneration in neurological disorders. This review unravels novel therapeutic strategies for tissue restoration and regeneration in neurological disorders based on the regulatory mechanisms of PTEN on neurogenesis and the stem cell niche.


Assuntos
Doenças do Sistema Nervoso , Doença de Parkinson , Humanos , Células-Tronco/metabolismo , Doenças do Sistema Nervoso/terapia , Doenças do Sistema Nervoso/metabolismo , Proliferação de Células , Doença de Parkinson/metabolismo , Diferenciação Celular , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
13.
Open Vet J ; 14(1): 525-533, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633189

RESUMO

Background: 5-fluorouracil (5-FU) is an antimetabolic agent used for treating slowly growing solid tumors like breast and ovarian carcinoma. Thymoquinone (TQ) is the main biologically active constituent of Nigella sativa, it has been found to demonstrate anticancerous effects in several preclinical studies, and this is because TQ possesses multitarget nature. Stem cells-derived exosomes are in the spotlight of research and are promising tissue regenerative and anticancer cell-derived nanovesicles. Aim: Herein, we studied the antineoplastic effects of Exosomes derived from mammary stem cells (MaSCs-Exo) on breast cancer cells, alone or combined with TQ when compared to a breast cancer chemotherapeutic agent; 5-FU. Methods: Our approach included performing viability test and measuring the expression of pro-apoptotic gene (Bax), anti-apoptotic gene (BCL-2) and angiogenic gene (VEGF) on Human MCF-7 cells (breast adenocarcinoma cells), the MCF-7 cells were cultured and incubated with medium containing 5-FU (25 µg/ml), TQ (200 µg/ml), MaSCs-Exo (100 µg protein equivalent), a combination of TQ (200 µg/ml) and MaSCs-Exo (100 µg). Results: Our obtained results show that TQ and MaSCs-Exo each can effectively inhibit breast cancer cell line (MCF-7) proliferation and growth. Also, the results show that the combination of TQ and MaSCs-Exo had higher cytotoxic effects on MCF-7 breast cancer cells than TQ or 5-FU, alone. Conclusion: The present study shows a promising anticancer potential of exosomes isolated from mammary stem cells; this effect was potentiated by adding TQ with MaSCs-derived exosomes.


Assuntos
Antineoplásicos , Benzoquinonas , Neoplasias da Mama , Exossomos , Humanos , Animais , Feminino , Neoplasias da Mama/veterinária , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Exossomos/metabolismo , Exossomos/patologia , Linhagem Celular Tumoral , Células-Tronco/metabolismo , Células-Tronco/patologia
14.
Mol Neurodegener ; 19(1): 31, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576039

RESUMO

BACKGROUND: Induced pluripotent stem cell-derived microglia (iMGL) represent an excellent tool in studying microglial function in health and disease. Yet, since differentiation and survival of iMGL are highly reliant on colony-stimulating factor 1 receptor (CSF1R) signaling, it is difficult to use iMGL to study microglial dysfunction associated with pathogenic defects in CSF1R. METHODS: Serial modifications to an existing iMGL protocol were made, including but not limited to changes in growth factor combination to drive microglial differentiation, until successful derivation of microglia-like cells from an adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) patient carrying a c.2350G > A (p.V784M) CSF1R variant. Using healthy control lines, the quality of the new iMGL protocol was validated through cell yield assessment, measurement of microglia marker expression, transcriptomic comparison to primary microglia, and evaluation of inflammatory and phagocytic activities. Similarly, molecular and functional characterization of the ALSP patient-derived iMGL was carried out in comparison to healthy control iMGL. RESULTS: The newly devised protocol allowed the generation of iMGL with enhanced transcriptomic similarity to cultured primary human microglia and with higher scavenging and inflammatory competence at ~ threefold greater yield compared to the original protocol. Using this protocol, decreased CSF1R autophosphorylation and cell surface expression was observed in iMGL derived from the ALSP patient compared to those derived from healthy controls. Additionally, ALSP patient-derived iMGL presented a migratory defect accompanying a temporal reduction in purinergic receptor P2Y12 (P2RY12) expression, a heightened capacity to internalize myelin, as well as heightened inflammatory response to Pam3CSK4. Poor P2RY12 expression was confirmed to be a consequence of CSF1R haploinsufficiency, as this feature was also observed following CSF1R knockdown or inhibition in mature control iMGL, and in CSF1RWT/KO and CSF1RWT/E633K iMGL compared to their respective isogenic controls. CONCLUSIONS: We optimized a pre-existing iMGL protocol, generating a powerful tool to study microglial involvement in human neurological diseases. Using the optimized protocol, we have generated for the first time iMGL from an ALSP patient carrying a pathogenic CSF1R variant, with preliminary characterization pointing toward functional alterations in migratory, phagocytic and inflammatory activities.


Assuntos
Leucoencefalopatias , Microglia , Adulto , Humanos , Diferenciação Celular , Leucoencefalopatias/metabolismo , Leucoencefalopatias/patologia , Microglia/metabolismo , Fosforilação , Células-Tronco/metabolismo
15.
Stem Cell Res Ther ; 15(1): 93, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561834

RESUMO

BACKGROUND: Spermatogonial stem cells (SSCs) were considered to be stem cells with limited potencies due to their existence in adult organisms. However, the production of spermatogonial stem cell colonies with broader differentiation capabilities in primary germ cell cultures from mice of select genetic backgrounds (C57BL6/Tg14, ddY, FVB and 129/Ola) indicated that SSCs from these strains were pluripotent. METHODS: We established primary cultures of SSCs from neonatal and adult Swiss 3T3 Albino mice. Stemness of SSC colonies were evaluated by performing real-time PCR and immunofluorescence analysis for a panel of chosen stemness markers. Differentiation potentials of SSCs were examined by attempting the generation of embryoid bodies and evaluating the expression of ectodermal, mesodermal and endodermal markers using immunofluorescence and real-time PCR analysis. RESULTS: Spermatogonial stem cells from neonatal and mature mice testes colonised in vitro and formed compact spermatogonial stem cell colonies in culture. The presence of stem cell markers ALPL, ITGA6 and CD9 indicated stemness in these colonies. The differentiation potential of these SSC colonies was demonstrated by their transformation into embryoid bodies upon withdrawal of growth factors from the culture medium. SSC colonies and embryoid bodies formed were evaluated using immunofluorescence and real-time PCR analysis. Embryoid body like structures derived from both neonatal and adult mouse testis were quite similar in terms of the expression of germ layer markers. CONCLUSION: These results strongly suggest that SSC-derived EB-like structures could be used for further differentiation into cells of interest in cell-based therapeutics.


Assuntos
Espermatogônias , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , Transdiferenciação Celular , Células Cultivadas , Células-Tronco/metabolismo
16.
Stem Cell Res Ther ; 15(1): 94, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561840

RESUMO

BACKGROUND: Spinal Muscular Atrophy (SMA) is an autosomal-recessive neuromuscular disease affecting children. It is caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene resulting in lower motor neuron (MN) degeneration followed by motor impairment, progressive skeletal muscle paralysis and respiratory failure. In addition to the already existing therapies, a possible combinatorial strategy could be represented by the use of adipose-derived mesenchymal stem cells (ASCs) that can be obtained easily and in large amounts from adipose tissue. Their efficacy seems to be correlated to their paracrine activity and the production of soluble factors released through extracellular vesicles (EVs). EVs are important mediators of intercellular communication with a diameter between 30 and 100 nm. Their use in other neurodegenerative disorders showed a neuroprotective effect thanks to the release of their content, especially proteins, miRNAs and mRNAs. METHODS: In this study, we evaluated the effect of EVs isolated from ASCs (ASC-EVs) in the SMNΔ7 mice, a severe SMA model. With this purpose, we performed two administrations of ASC-EVs (0.5 µg) in SMA pups via intracerebroventricular injections at post-natal day 3 (P3) and P6. We then assessed the treatment efficacy by behavioural test from P2 to P10 and histological analyses at P10. RESULTS: The results showed positive effects of ASC-EVs on the disease progression, with improved motor performance and a significant delay in spinal MN degeneration of treated animals. ASC-EVs could also reduce the apoptotic activation (cleaved Caspase-3) and modulate the neuroinflammation with an observed decreased glial activation in lumbar spinal cord, while at peripheral level ASC-EVs could only partially limit the muscular atrophy and fiber denervation. CONCLUSIONS: Our results could encourage the use of ASC-EVs as a therapeutic combinatorial treatment for SMA, bypassing the controversial use of stem cells.


Assuntos
Vesículas Extracelulares , Atrofia Muscular Espinal , Humanos , Criança , Camundongos , Animais , Modelos Animais de Doenças , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/patologia , Neurônios Motores , Células-Tronco/metabolismo , Vesículas Extracelulares/metabolismo
17.
Shanghai Kou Qiang Yi Xue ; 33(1): 40-48, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583023

RESUMO

PURPOSE: To explore the cytotoxic effect of a menthol-favored E-liquid on human periodontal ligament stem cells (hPDLSCs), as well as the underlying mechanism of electronic cigarette (E-cig)-induced cell apoptosis. METHODS: PDLSCs were isolated and cultured from periodontal ligament tissues of healthy premolars extracted for orthodontic reasons. Cells in passage 3 were used to detect the surface markers of stem cells by flow cytometry. Then the cells were exposed to different doses of menthol-favored E-liquid (at 59 mg/L nicotine concentration) in the culture median (the final nicotine concentrations were 0.1 µg/mL, 1.0 µg/mL, 10 µg/mL, 50 µg/mL, 0.1 mg/mL, 0.2 mg/mL and 0.5 mg/mL, respectively) for different period of times (24, 48 and 72 h). The cell viability was analyzed by CCK-8 assay. Cell apoptosis was evaluated by flow cytometry (7-AAD and Annexin V staining) and TUNEL assay. Reactive oxygen species (ROS) production was detected with fluorescence probe DCFH-DA by confocal microscopy and flow cytometry. The protein expression levels associated with ROS/JNK/caspase 3 axis(p-JNK, JNK, c-Jun, p-c-Jun, Bcl-2, Bax and cleaved-caspase 3) were analyzed by Western blot. Immunocytofluorescense staining was applied to evaluate the expression level of p-JNK. After addition of NAC, a ROS scavenger, and MAPK/JNK specific blocker SP600125, their effects on E-cig-induced cell apoptosis were evaluated. Statistical analysis was performed with Graph Pad 5.0 software package. RESULTS: Human PDLSCs were successfully isolated and cultured and flow cytometry assay showed the mesenchymal stem cell surface biomarkers (CD73, CD90 and CD105) were positively expressed. CCK8 assay indicated cell viability was significantly(P<0.001) different among all concentration groups at various time points (24, 48 or 72 h), and the difference in apoptosis rate among all concentration groups was also statistically significant (P<0.001). After exposure to E-liquid with nicotine concentration ≥50 µg/mL, cell viability was significantly reduced, and the proportion of apoptotic cells and the cellular ROS level was significantly increased in a dose-dependent manner as compared with the control group(0.0 mg/mL). Western blot assay showed E-cig exposure could promote MAPK/JNK phosphorylation in a dose-dependent and time-dependent manner. Either NAC or SP600125 could partially rescue the E-cig-induced cell apoptosis via reversing up-regulation of p-JNK and cleaved caspase 3. CONCLUSIONS: ROS/JNK/caspase 3 axis is involved in menthol-favored E-liquid-induced apoptosis of hPDLSCs.


Assuntos
Antracenos , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Caspase 3/metabolismo , Caspase 3/farmacologia , Mentol/farmacologia , Ligamento Periodontal/metabolismo , Nicotina/efeitos adversos , Apoptose , Células-Tronco/metabolismo
18.
Nanotheranostics ; 8(3): 298-311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577321

RESUMO

Exosomes are nanosized extracellular vesicles secreted by all cell types, including canine adipose-derived stem cells (cADSCs). By mediating intercellular communication, exosomes modulate the biology of adjacent and distant cells by transferring their cargo. In the present work after isolation and characterization of exosomes derived from canine adipose tissue, we treated the same canine donors affected by hepatopathies with the previously isolated exosomes. We hypothesize that cADSC-sourced miRNAs are among the factors responsible for a regenerative and anti-inflammatory effect in the treatment of hepatopathies in dogs, providing the clinical veterinary field with an effective and innovative cell-free therapy. Exosomes were isolated and characterized for size, distribution, surface markers, and for their miRNomic cargo by microRNA sequencing. 295 dogs affected with hepatopathies were treated and followed up for 6 months to keep track of their biochemical marker levels. Results confirmed that exosomes derived from cADSCs exhibited an average diameter of 91 nm, and positivity to 8 known exosome markers. The administration of exosomes to dogs affected by liver-associated inflammatory pathologies resulted in the recovery of the animal alongside the normalization of biochemical parameters of kidney function. In conclusion, cADSCs-derived exosomes are a promising therapeutic tool for treating inflammatory disorders in animal companions.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Cães , Animais , MicroRNAs/genética , Exossomos/genética , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Hepatite Crônica/metabolismo , Células-Tronco/metabolismo
19.
BMC Oral Health ; 24(1): 394, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539149

RESUMO

OBJECTIVE: The objective of this study was to assess the characterization of human acellular amniotic membrane (HAAM) using various decellularization methods and their impact on the proliferation and differentiation of human dental pulp stem cells (DPSCs). The goal was to identify scaffold materials that are better suited for pulp regeneration. METHODS: Six different decellularization methods were used to generate the amniotic membranes. The characteristics of these scaffolds were examined through hematoxylin and eosin (H&E) staining, scanning electron microscopy (SEM), and immunohistofluorescence staining (IHF). The DPSCs were isolated, cultured, and their capacity for multidirectional differentiation was verified. The third generation (P3) DPSCs, were then combined with HAAM to form the decellularized amniotic scaffold-dental pulp stem cell complex (HAAM-DPSCs complex). Subsequently, the osteogenic capacity of the HAAM-DPSCs complex was evaluated using CCK8 assay, live-dead cell staining, alizarin red and alkaline phosphatase staining, and real-time quantitative PCR (RT-PCR). RESULTS: Out of the assessed decellularization methods, the freeze-thaw + DNase method and the use of ionic detergent (CHAPS) showed minimal changes in structure after decellularization, making it the most effective method. The HAAM-DPSCs complexes produced using this method demonstrated enhanced biological properties, as indicated by CCK8, alizarin red, alkaline phosphatase staining, and RT-PCR. CONCLUSION: The HAAM prepared using the freeze-thaw + DNase method and CHAPS methods exhibited improved surface characteristics and significantly enhanced the proliferation and differentiation capacity of DPSCs when applied to them. The findings, therefore demonstrate the capacity for enhanced pulp regeneration therapy.


Assuntos
Âmnio , Antraquinonas , Polpa Dentária , Humanos , Âmnio/metabolismo , Células Cultivadas , Fosfatase Alcalina/metabolismo , Células-Tronco/metabolismo , Regeneração , Osteogênese , Diferenciação Celular , Desoxirribonucleases/metabolismo , Proliferação de Células
20.
Stem Cell Res Ther ; 15(1): 91, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539224

RESUMO

Musculoskeletal disorders are the leading causes of physical disabilities worldwide. The poor self-repair capacity of musculoskeletal tissues and the absence of effective therapies have driven the development of novel bioengineering-based therapeutic approaches. Adipose-derived stem cell (ADSC)-based therapies are being explored as new regenerative strategies for the repair and regeneration of bone, cartilage, and tendon owing to the accessibility, multipotency, and active paracrine activity of ADSCs. In this review, recent advances in ADSCs and their optimization strategies, including ADSC-derived exosomes (ADSC-Exos), biomaterials, and genetic modifications, are summarized. Furthermore, the preclinical and clinical applications of ADSCs and ADSC-Exos, either alone or in combination with growth factors or biomaterials or in genetically modified forms, for bone, cartilage, and tendon regeneration are reviewed. ADSC-based optimization strategies hold promise for the management of multiple types of musculoskeletal injuries. The timely summary and highlights provided here could offer guidance for further investigations to accelerate the development and clinical application of ADSC-based therapies in musculoskeletal regeneration.


Assuntos
Tecido Adiposo , Exossomos , Tecido Adiposo/metabolismo , Adipócitos , Regeneração , Materiais Biocompatíveis , Exossomos/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...